The Order of minimal realization of Jordan canonical form systems
نویسندگان
چکیده
منابع مشابه
Determining the order of minimal realization of descriptor systems without use of the Weierstrass canonical form
A common method to determine the order of minimal realization of a continuous linear time invariant descriptor system is to decompose it into slow and fast subsystems using the Weierstrass canonical form. The Weierstrass decomposition should be avoided because it is generally an ill-conditioned problem that requires many complex calculations especially for high-dimensional systems. The present ...
متن کاملdetermining the order of minimal realization of descriptor systems without use of the weierstrass canonical form
a common method to determine the order of minimal realization of a continuous linear time invariant descriptor system is to decompose it into slow and fast subsystems using the weierstrass canonical form. the weierstrass decomposition should be avoided because it is generally an ill-conditioned problem that requires many complex calculations especially for high-dimensional systems. the present ...
متن کاملThe Jordan Canonical Form
Let β1, . . . , βn be linearly independent vectors in a vector space. For all j with 0 ≤ j ≤ n and all vectors α1, . . . , αk, if β1, . . . , βn are in the span of β1, . . . , βj, α1, . . . , αk, then j + k ≥ n. The proof of the claim is by induction on k. For k = 0, the claim is obvious since β1, . . . , βn are linearly independent. Suppose the claim is true for k−1, and suppose that β1, . . ....
متن کاملThe Jordan canonical form
4 The minimal polynomial of a linear transformation 7 4.1 Existence of the minimal polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.2 The minimal polynomial for algebraically closed fields . . . . . . . . . . . . . . . . . 8 4.3 The characteristic polynomial and the Cayley–Hamilton theorem . . . . . . . . . . . 9 4.4 Finding the minimal polynomial . . . . . . . . . . . . . ....
متن کاملJordan Canonical Form
is the geometric multiplicity of λk which is also the number of Jordan blocks corresponding to λk . • The orders of the Jordan Blocks of λk must sum to the algebraic multiplicity of λk . • The number of Jordan blocks corresponding to an eigenvalue λk is its geometric multiplicity. • The matrix A is diagonalizable if and only if, for any eigenvalue λ of A , its geometric and algebraic multiplici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática
سال: 2018
ISSN: 2175-1188,0037-8712
DOI: 10.5269/bspm.v36i3.23030